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Approximate natural orbitals are determined iteratively from CI expansions 
constructed using first-order perturbation theory in order to investigate the 
possibility of eliminating the complete transformation of MO integrals on each 
iteration. Results on LiH and H20 are compared with fully variationally determined 
NO's to assess questions of convergence. 
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1. Introduction 

The method of configuration interaction (CI) provides a well-defined variational 
procedure for including electronic correlation in many electron systems. Its difficulty 
lies in the rapid increase in the number of molecular orbital integrals and the number of 
configurations with an increase in the number of  molecular orbitals. Two simplifying 
steps are usually taken: 1) The set of  molecular orbitals is kept small, and 2) only the 
more important configurations are retained in the expansion. 

The set of molecular orbitals is generally obtained from some reference calculation, 
such as a single or multideterminant SCF treatment to determine the primary orbitals, 
and a transformation of the remainder of the virtual orbitals to increase their individual 
effectiveness and thereby to enhance convergence of the CI expansion, e.g., see exchange 
maximizations or positive ion optimization transformations [ i ,  2]. 

Another type of transformation, in situ in the CI procedure, involves the use of natural 
orbitals to construct the configurations; see discussions of convergence and reviews of 
the general theory by L6wdha [3] ,Kutzelnigg [4], Davidson ,[5], Bender [6], and 
Schaefer [7]. One way to proceed, discussed by Bender and Davidson [8], is to deter- 
mine approximate natural orbitals by the diagonalization of the first-order density 
matrix constructed from a given CI wave function. 

Refinements can be accomplished iteratively in the Bender and Davidson scheme [8]. 
Here, an initial CI wave function is chosen by some method and natural orbitals are 
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constructed from that wave function by,setting up and diagonalizing the density 
matrix. The natural orbitals thus obtained are used to generate configurations in the 
next iteration, a new CI wave function is constructed from these configurations and is 
used subsequently to set up the first-order density matrix and to obtain new natural 
orbitalsl The process is repeated until energy convergence is achieved, and the density 
matrix remains sufficiently close to a diagonal form. The difficulty in the iterative 
technique for large systems is the transformation of integrals after each step, and thus 
a rigorous execution of the prescription becomes very time consuming. 

In this paper we consider a simplification of the problem of determining approximate 
natural orbitals iteratively from CI expansions. The idea is very simple: in all inter- 
mediate constructions, a precise variational treatment is abandoned in favor of using 
first-order perturbation theory (of the wave function) to construct approximate CI 
expansions [9]. These expansions are used to generate the density matrices which are 
then diagonalized to determine natural orbitals. This means that the types of  matrix 
elements which appear are well defined and require only a small subset of the total 
number of MO integrals for their construction. Algorithms are available for the genera- 
tion of a subset of MO integrals without requiring a transformation of all MO integrals. 
Finally in the last iteration, the CI problem is treated in a fully variational and conven- 
tional manner. Closely related work is due to Siu and Hayes [9] who also used first- 
order perturbation theory to treat CI expansions to determine approximate natural 
orbitals which are then used to generate final CI expansions, and by Hay [ 10] using 
the Bk method of Shavitt [11] to determine approximate MO's. The present work can 
be regarded as an iterative application of the Siu and Hayes scheme. See also work on 
the determination of pseudo-NO's (or pair-NO's) using perturbation theory by Meyer [ 12], 
and Ahlrichs and Driessler [13]. 

The molecules LiH and H20 are used for illustration and calculated natural orbitals 
and energies are compared with results from variational CI treatments. 

2. Theory 

The first-order density matrix for a given antisymmetric wave function ~ is defined as 

3'(1'11) =Nf~*( l ' ,  2, 3 . . . .  N)  ~; (1,2,  3 . . . .  N)dx2,  dx 3 . . . .  dXN. 

For a configuration interaction wave function (normalized) 

q~= ~ ck q~k 
k 

where a single set of orthonormal spin orbitals, {@, is used to construct Slater deter- 
minants, 

~k(1,2 . . . .  N) = (N!) -'/2,;~ ( ~ ( 1 ) u ~ ( 2 ) . . .  u~v(N)) 

~,(1'[t) E ~ C ~ C l  f * ' = ~k(1 ,2  . . . .  N) ~t(1,2 . . . .  N)dx2, dx 3 �9 �9 �9 dxN. 
k 1 

Diagonalization of the Hermitian matrix 3' can be accomplished by a unitary trans- 
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formation, Sr = n (diagonal matrix), and a new set of spin orbitals Xi (called natural 
spin orbitals) can be defined by 

Xi = ~. urnSmi 
m 

such that 

3,(1'11) Y. * ' = nit• )Xk(1) 
k 

where the occupation numbers, nk, satisfy 0 ~< nk <~ 1 and ~kntc = N. 

If the molecular orbitals are expanded in terms of a basis {fk) 

ui = ~ aikA 
k 

the natural orbitals carl be expressed as 

Xi = ~. ~ .amkSmi fk .  
m k 

In the present iterative scheme, we proceed as follows. 
1) A choice of an initial set of  molecular orbitals. Generally for the ground state these 

are taken to be the occupied SCF orbitals plus virtual orbitals. The latter could first 
be transformed to enhance convergence, e.g., by exchange maximization with the 
occupied set. 

2) The construction of a set of configurations by promotion from the occupied to 
unoccupied set, including all single excitations plus selected multiple excitations. 
The zeroth-order description may contain several determinants in which case 
excitations would be performed from the major determinants. 

3) Approximate solution of the mixing of configurations problem using perturbation 
theory (first order in the wave function). 

4) Construction of the first-order density matrix and its diagonalization. 
5) Repetition of the procedure using the natural orbitals as the set of molecular orbitals 

in 1) until the energies and orbitals converge. In the last iteration the CI problem is 
treated variationally. 

As noted earlier, the procedure outlined is essentially that of Bender and Davidson except 
for the use of perturbation theory for the intermediate iterations. 

The CI expansion is of the form 

6 = • O +  ~ C i f i  
i > m  

where fro is a multideterminant function 
trl 

f o =  ~ d i f i  
i=I 

constructed from the important contributors to the state of interest. In the present case 
~o consists of the single determinant ground state SCF solution plus other determinants 
which interact strongly with the SCF solution. All single excitations are included; these 
configurations which can significantly affect the first-order density matrix do not inter- 
act directly with the SCF solution (Brillouin's theorem), but enter through their mixing 
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with double excitation configurations. All other configurations were generated and 
selected using the procedure discussed by Whitten and Hackmeyer [14]. In this procedure 
a configuration is retained in the CI expansion if and only if its interaction with the 
zeroth-order description of the state exceeds a specified threshold, 6, 

I(~~ > 6 

Ek - E ~ 

Coefficients d i can be obtained from a simple variational calculation as in the present 
work, or from perturbation theory. Coefficients C/are obtained from first-order 
perturbation theory, and as such are the approximate solutions of the variational 
secular equations, 

E -  Ei E -  Ei 

where E i = (~iIH[ t~i), and E = (~~ ~O~ or E could be taken as the energy of the CI 
expansion as in the Brillouin-Wigner theory. For E = @o [HI ~o ), it should be noted 
that the determination of ~ does not require computation of all of  the elements of the 
Hamiltonian matrix, and thus not all integrals over molecular orbitals are needed. 

3. Results and Discussion 

Calculations were performed on the LiH and H20 molecules using the basis set and 
geometry given in Table 1 where the SCF results are also reported. Natural orbitals were 
computed using two different techniques: 
a) The iterative natural orbital scheme proposed by Bender and Davidson using the 

occupied and all virtual orbitals from the SCF treatment of the ground state. A 
variational CI calculation was carried out on each iteration, selecting approximately 
200 to 300 configurations for each iteration as determined using an interaction 
threshold, 6. Four to six iterations were required to achieve convergence for LiH 
and H20, respectively. 

b) The iterative natural orbital scheme based on wave functions calculated using first- 
order perturbation theory for the wave-function, as discussed in the previous section. 
The same set of occupied and virtual orbitals as in 1) was used. Iterations were 
performed and the number of configurations was kept between 200 and 300 by using 
an appropriate interaction threshold. Variational CI calculations were then performed 
using the orbitals from the last iteration. 

For comparison with the iterative natural orbital calculations, a conventional CI calcula- 
tion was carried out based on the ground state SCF molecular orbitals. In the natural 
orbital and conventional CI calculations all single excitations from the doubly occupied 
ground state MO's were included. 

The ground state SCF energy for LiH obtained in this study reported in Table 1 is 
slightly higher than that obtained by Bender and Davidson since the basis set employed 
here is not as large. Since the aim of the present work is the illustration of the tech- 
nique, no effort was made to improve the basis set to achieve a lower energy. In addition, 
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Table 1. SCF total enegry and orbital energies of LiH and H20. Calculations are for the ground state 
equilibrium geometry 

LiH a Total energy: -7.97968 a.u. 
Nuclear repulsion: 0.99502 a.u. Electronic energy: -8.97470 a.u. 

Orbital energies: -2.4397 0.397 0.980 1.507 
-0.2955 0.455 0.980 : 

0.046 0.764 1.483 3.071 
0.397 0.764 1.483 49.328 

H20 b Total energy: -76.04264 a.u. 
Nuclear repulsion: 9.18711 a.u. Electronic energy: -85.22975 a.u. 

Orbital energies: -20.5534 0.265 0.869 1.425 
-1.3458 0.348 1.127 1.454 
-0.7128 0.638 1.189 : 
-0.5789 0.780 1.345 3.608 
-0.5028 0.809 1.392 45.134 

a Coordinates: Li(0, 0, 0), H(0, 0, 3.015), in a.u. 
Basis: 18 basis function groups. 
Li sb s2, s3, s4 (10 Gaussians/4 groups): 

Pl, P2 (2 Gaussians/2 groups, x, y, z/exponents 0.5, 1.0). 
H sl, s2 (4 Gaussians/2 groups) 

Pl, P2 (2 Gaussigns/2 groups, x, y, z/exponents 0.2, 0.4) 
Basis group exponents and coefficients are given in Ref. [14]. 

b Coordinates O(0, 0, 0), H(0, +- 1.431, 1.109), in a.u. 
Basis: 23 basis function groups. 
O s~, s2, s 3 (9 Gaussians/3 groups); Pl, P2 (5 Gaussians/2 groups) 

d b d~ (2 Gaussians/2 groups/exponents 1.322, 0.3917) 
H sl, s2 (4 Gaussians/2 groups) 

p~ (2 Gaussians/1 group, y, z) 
Basis group exponents and coefficients are given in Ref. [15]. 

the choice of p basis, while suitable for introducing o polarization, is appropriate only 

for correlation of the valence shell. The results of iterative natural orbital calculations 

are reported in Table 2. In the case of the variational CI calculations, two series of 
calculations are reported: series A, in which single excitations and double excitations 
of the type a 2 ~ b 2 only are included; series B, in which all single excitations and 
multiple excitations which satisfy an interaction threshold 6 > 5 x 10 -7 a.u. are in- 

cluded. Rapid convergence of the energy to the limiting value occurs in all calculations. 

However, it is noted that the small CI expansion (series A) shows a significant error 
compared to the larger CI expansion (series B). This demonstrates the fact that natural 
orbitals cannot be relied on to enhance convergence to such an extent that a very small 
CI expansion of this type would closely approximate a larger CI expansion. 

For the iterative natural orbital calculations based on perturbation theory, series C in 
Table 2, the same type of excitations and threshold values were used as in the varia- 
tional calculations (B). In order to illustrate the convergence, (~ JIll ~) energiesare 
reported using the wave function determined by first-order perturbation theory. Again 
rapid convergence of the energy is noted. The second entry for iteration five, ( -9 .02803) ,  
is determined using the natural orbitals from iteration four, an independent generation of 

350 configurations using ~ = 5 x 10 .7 a.u., followed by a fully variational determination 
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Table 2. Iterative natural orbitals CI calculations on LiH. Variational CI energy calculations 
(accurate matrix diagonalization) and energies evaluated using wave functions obtained by first- 
order perturbation theory are reported for each iteration. Natural orbitals obtained on each iteration 
are used to construct CI expansions for the next iteration. The number of determinants in each 
calculation is denoted by N 

Variational Calculations Perturbation Theory 

(A) a Electronic (B) b Electronic (C) c Electronic 
Iteration N Energy N Energy N Energy 

I(SCF MO'~ 10 -8.98570 239 -9.02756 208 -8.99215 
2 38 -9.00563 202 -9.02782 182 -9.02108 
3 38 -9.00568 335 -9.02815 266 -9.02130 
4 38 9.00575 364 -9.02817 314 -9.02157 
5 38 -9.00575 369 -9.02826 360 -9.02157 

(350) (-9.02803) d 

a SeriesA calculations include all single excitations and double excitations, a a ~ b 2, from orbitals 
1 and 2 to orbitals 3-10 of Table 1. 

b Series B calculations include all single excitations, and multiple excitations from the zeroth-order 
38 determinant CI wave function, C o, of seriesA, for an interaction threshold 6 = 5 x 10 -7 a.u. 
(see text). 

c Series C calculations include all single excitations, and multiple excitations from the zeroth-order 
CI wave function, qjo, for an interaction threshold ~ = 5 x 10 .7 a.u. 

d Variational determination of the energy and coefficients of the CI expansion using the NO's of 
iteration 4. 

of the energy and coefficients of the CI expansion. This result is in very good agreement 

with the variational determination of NO's, differing by only 2 x 10 .4 a.u. 

Similarly, for the water molecule, NO's were obtained iteratively using energy variational 

and perturbation theory techniques, and comparisons of the two methods of  calcula- 

tion are reported in Table 3. Since the electron pairs are separated in H20, the molecule 
affords a better test of the iterative procedures than does LiH. The procedures followed 

are the same as described for LiH except in reporting the results of the perturbation 

theory method the energy values correspond to a variational determination of energies 

and coefficients of the CI expansion. The determination of NO's for the next iteration 
in the perturbation theory procedure is, as before, using first-order perturbation theory 

to determine the CI expansion. In the generation of configurations, only those deter- 
minants with an interaction with the ground state determinant, ~o satisfying 
6 = 2 x 10 -4 were retained in the calculation. On successive iterations, it is therefore 
possible to have a variation in the total number of determinants in the CI expansion, 
and for both series of calculations the variation is between 187 and 212 determinants. 
In the first four iterations of Table 3, results are reported for the 160 determinants 
with the largest interaction with ~o, and in iterations five and six, both the 160 deter- 
minant result and the result including an determinants are reported. Comparing either 
series gives a measure of the convergence. For the variational calculations, approximately 
six iterations ale required to achieve a difference in energy on successive iterations of 
3 x 10 .4 a.u. The perturbation theory series was carried out for only five iterations and 
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Table 3. Iterative natural orbitals CI calculations on H20. Variational CI energy calculations 
(accurate matrix diagonalization) and energies evaluated using wave functions obtained by first- 
order perturbation theory are reported for each iteration. Natural orbitals obtained on each itera- 
tion are used to construct CI expansions for the next iteration. The number of determinants in 
each calculation is denoted by N 

Iteration 

Variational Calculations a Perturbation Theory a 

(B) Electronic (C) Electronic b 
N Energy N Energy 

I(SCF MO'O 160 -85.36127 160 -85.36127 
2 160 -85.38721 160 -85.37852 
3 160 -85.39059 160 -85.39239 
4 160 -85.39497 160 -85.39271 
5 160 -85.39671 160 -85.39237 

187 -85.40188 205 -85.39938 
6 160 -85.39791 

187 -85.40222 

a Calculations include all single excitations, and multiple excitations from the single determinant 
ground state wave function, tp ~ for an interaction threshold 6 = 2 x 10 -4 a.u. (see text). Unless 
otherwise indicated, the 160 determinants with the largest interaction with ~po were used in the CI, 
the other entires, 187 and 205, correspond to the total number of determinants generated for the 
interaction threshold ~. 

b Energies reported are for a variational determination of the energy and coefficients, but the 
coefficients used to construct NO's for the next iteration are from perturbation theory. 

comparing the fifth iterations shows an energy 3 x 10 -3 a.u. higher than the variational 

result. Thus, in both approaches, energy convergence does occur, but  the rate of conver- 

gence is significantly slower than in LiH. 

In applications, the point of view expressed in the present work would involve carrying 
out a sequence of iterations without computation of (~ IHi ~) since such an evaluation 
would require the same matrix elements as a fully variational iterative approach. The 
convergence would then be tested by performing variational CI calculations starting with 
the natural orbital basis determined from perturbation theory. 

As a side issue, the natural orbitals from the final iteration of the variational (B) and 
perturbation theory (C) calculations are used to generate CI expansions of different 
size as determined by the choice of interaction threshold 6. The results are compared 

in Table 4 with CI expansions produced using occupied and virtual (not transformed) 
SCF MO's. The latter energies are seen to lag considerably behind the CI energies 
obtained using NO's until small thresholds, hence relatively large CI expansions, are 
produced, see Table 4; similar results are reported in Ref. [9]. 

These results suggest several conclusions which are likely closer to being generally 
applicable than to being limited to only the present example. First, a relatively modest 
size CI expansion based on NO's can be much inferior to a significantly larger CI based 
on either NO's or SCF MO's. On the other hand, comparing relatively small CI expan- 

sions using NO's and SCF MO's, the former is expected to be superior. This simply 
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Table 4. Comparison of CI calculations using natural orbitals with CI calculations using SCF 
molecular orbitals. Natural orbitals were taken from the final iteration of the variational and 
perturbation theory calculations on LiH and H20, see Tables 2 and 3 

Energies (a.u.) 

Number of NO's NO's 
Determinants a SCF MO's (Variational Calc.) (Perturbation Theory) 

LiH 
17 b -9.00215 -9.02155 -9.02157 
65 c -9.00669 -9.02315 -9.02289 
50 d -8.99064 -9.02587 

350 e -9.02756 -9.02826 -9.02803 

H20 
80 -85.35448 -85.39249 -85.38643 

160 -85.38732 -85.41032 -85.40646 
320 -85.41373 -85.42039 -85.42075 
480 -85.42343 -85.42587 -85.42719 

-85.42943(854) f -85.42984 (678) g 

a For LiH the number of individual determinants in the CI is given, and for H20 the totals are for 
the number of determinant pairs, .~k -+ ~k, where ~k corresponds to a change of all spins of ~ok, 
see Ref. [14]. 

b Double excitations, a 2 ~ b 2, from orbitals 1 and 2 to orbitals 3-10. 
c All single and double excitations, a 2 ~ b 2, from orbitals 1 and 2 to orbitals 3-18. 
d, e, f, g Single and multiple excitations which satisfy an interaction threshold: (d) 6 = 5 x 10 -5, 

(e) ~ = 5 x 10 -7, (0 8 = 5 x 10 -6, (g) ~ = 1 x 10 -s. 

reflects the desirability of transforming the virtual SCF MO's prior to performing CI 
expansions. The present results provide no information on the best type of transformation, 

however. NO's are superior to no transformation, but on the basis of other work one 

would expect the use of positive ion or exchange maximized virtual orbitals to lead also 

to considerable improvement of the convergence. Finally the large CI expansions produce 
nearly equivalent results, de-emphasizing a special efficacy attributed to NO's, providing 

the organization of the generation of configurations is properly treated to allow multiple 

excitations to occur from the major contributing~ configurations of the state of interest. 
For further discussion of these c,onclusions see the comprehensive work of I. Shavitt [16]. 

Of course, another sense in which to view the perturbation scheme is not as a method for 
determining precise NO's, but instead simply as a practical device for performing virtual 
orbital transformations prior to large-scale configuration interaction; here one would 
imagine carrying out for example only one or a very few iterations to determine the NO 
basis. This point of view is the same as advocated by Siu and Hayes in their perturbation 
theory studies [9]. See also a recent study of the convergence of natural orbital procedures 
by Thunemann e t  al. [17] in which the choice of configuration space is found to be much 
more important than the attainment of strict NO convergence. 

As a final remark, in problems in which the entire MO basis is to be used to construct 
configurations, we have found no practical advantage in using NO's if one is prepared to 
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go to large CI expansiens; indeed, the NO computations are more lengthy than the use of 
SCF MO's. However, in problems in which one seeks to reduce the size of  the MO basis, 
an approximate determination of NO's using perturbation theory can lead to a useful 
practical procedure for performing the transformation of virtual orbitals. 
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